Sugar glass fugitive ink loaded with calcium chloride for the rapid casting of alginate scaffold designs
Gabrielle Gauvin-Rossignol,
Philippe Legros,
Jean Ruel,
Marc-André Fortin,
André Bégin-Drolet
Affiliations
Gabrielle Gauvin-Rossignol
Bureau de Design, Département de Génie Mécanique, Pavillon Adrien-Pouliot, Université Laval, Québec, G1V 0A6, Canada
Philippe Legros
Centre de recherche du Centre hospitalier universitaire de Québec (CR-CHUQ), axe Médecine Régénératrice, Québec, G1L 3L5, Canada; Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, Québec, G1V 0A6, Canada; Department of Mining, Metallurgy and Materials Engineering, Université Laval, Québec, G1V 0A6, Canada
Jean Ruel
Bureau de Design, Département de Génie Mécanique, Pavillon Adrien-Pouliot, Université Laval, Québec, G1V 0A6, Canada
Marc-André Fortin
Centre de recherche du Centre hospitalier universitaire de Québec (CR-CHUQ), axe Médecine Régénératrice, Québec, G1L 3L5, Canada; Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, Québec, G1V 0A6, Canada; Department of Mining, Metallurgy and Materials Engineering, Université Laval, Québec, G1V 0A6, Canada
André Bégin-Drolet
Bureau de Design, Département de Génie Mécanique, Pavillon Adrien-Pouliot, Université Laval, Québec, G1V 0A6, Canada; Corresponding author.
Alginate-based hydrogels are widely used for the development of biomedical scaffolds in regenerative medicine. The use of sugar glass as a sacrificial template for fluidic channels fabrication within alginate scaffolds remains a challenge because of the premature dissolution of sugar by the water contained in the alginate as well as the relatively slow internal gelation rate of the alginate. Here, a new and simple method, based on a sugar glass fugitive ink loaded with calcium chloride to build sacrificial molds, is presented. We used a dual calcium cross-linking process by adding this highly soluble calcium source in the printed sugar, thus allowing the rapid gelation of a thin membrane of alginate around the sugar construct, followed by the addition of calcium carbonate and gluconic acid δ-lactone to complete the process. This innovative technique results in the rapid formation of ''on-demand'' alginate hydrogel with complex fluidic channels that could be used in biomedical applications such as highly vascularized scaffolds promoting pathways for nutrients and oxygen to the cells.