Molecular Medicine (Nov 2018)

Propofol inhibited autophagy through Ca2+/CaMKKβ/AMPK/mTOR pathway in OGD/R-induced neuron injury

  • Bei Sun,
  • Hao Ou,
  • Fei Ren,
  • Ye Huan,
  • Tao Zhong,
  • Min Gao,
  • Hongwei Cai

DOI
https://doi.org/10.1186/s10020-018-0054-1
Journal volume & issue
Vol. 24, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background The neuroprotective role of propofol (PPF) in cerebral ischemia-reperfusion (I/R) has recently been highlighted. This study aimed to explore whether the neuroprotective mechanisms of PPF were linked to its regulation of Ca2+/CaMKKβ (calmodulin-dependent protein kinase kinase β)/AMPK (AMP-activated protein kinase)/mTOR (mammalian target of rapamycin)/autophagy pathway. Methods Cultured primary rat cerebral cortical neurons were treated with oxygen-glucose deprivation and re-oxygenation (OGD/R) to mimic cerebral I/R injury in vitro. Results Compared with the control neurons, OGD/R exposure successfully induced neuronal I/R injury. Furthermore, OGD/R exposure notably caused autophagy induction, reflected by augmented LC3-II/LC3-I ratio and Beclin 1 expression, decreased p62 expression, and increased LC3 puncta formation. Moreover, OGD/R exposure induced elevation of intracellular Ca2+ concentration ([Ca2+]i). However, PPF treatment significantly antagonized OGD/R-triggered cell injury, autophagy induction, and [Ca2+]i elevation. Further investigation revealed that both autophagy induction by rapamycin and [Ca2+]i elevation by the Ca2+ ionophore ionomycin significantly reversed the PPF-mediated amelioration of OGD/R-triggered cell injury. Importantly, ionomycin also significantly abrogated the PPF-mediated suppression of autophagy and CaMKKβ/AMPK/mTOR signaling in OGD/R-exposed neurons. Additionally, activation of CaMKKβ/AMPK/mTOR signaling abrogated the PPF-mediated autophagy suppression. Conclusion Our findings demonstrate that PPF antagonized OGD/R-triggered neuronal injury, which might be mediated, at least in part, via inhibition of autophagy through Ca2+/CaMKKβ/AMPK/mTOR pathway.

Keywords