Abstract The prevention and precise treatment of early-stage lung adenocarcinoma (LUAD) characterized by small nodules (stage IA) remains a significant challenge for clinicians, which is due largely to the limited understanding of the oncogenic mechanisms spanning from preneoplasia to invasive adenocarcinoma. Our study highlights the pivotal role of cancer cells exhibiting high expression of centromere protein F (CENPF), driven by TP53 mutations, which become increasingly prevalent during the transition from preneoplasia to invasive LUAD. Biologically, cancer cells (CENPF+) exhibited robust proliferative and stem-like capabilities, thereby propelling the malignant progression of early-stage LUAD. Clinically, autoantibodies against CENPF in the serum and elevated cancer cells (CENPF+) in tissue correlated positively with the progression of early-stage LUAD, especially those in stage IA. Our findings suggest that cancer cells (CENPF+) play a central role in orchestrating the malignant evolution of LUAD and hold potential as a novel biomarker for early-stage detection and management of the disease.