Ecology and Evolution (Sep 2023)
Host‐associated genetic differentiation and origin of a recent host shift in the generalist parasitic weed Phelipanche ramosa
Abstract
Abstract Branched broomrape, Phelipanche ramosa (L.) Pomel, is a globally distributed parasitic weed of economic importance. In Europe, where it is native, it can infest several crops, notably tomato, tobacco, and hemp. In western France, it has recently adapted to a new host crop, oilseed rape, causing substantial damage. The aim of this study was to investigate the evolutionary relationships and genetic differentiation among P. ramosa populations infesting different hosts. We collected 1611 P. ramosa samples from 109 fields cultivated with six different crops (oilseed rape, tobacco, hemp, tomato, lentil, and celery) and distributed among six European countries. All samples were genotyped for ten microsatellite loci and a subset of samples was sequenced for two nuclear genes and two chloroplast genes. Genetic differentiation among populations was high (FST = 0.807) and mainly driven by differentiation among different host crops, with no significant geographic structure. Genetic structure analysis identified up to seven biologically meaningful clusters that matched with host crops of origin. Reconstructed networks of sequence haplotypes and multilocus SSR genotypes showed a large genetic divergence between samples collected on oilseed rape and samples collected on other crops. The phylogeny inferred from DNA sequences placed samples collected from oilseed rape as a basal lineage. Approximate Bayesian Computations were used to compare different evolutionary scenarios of divergence among the three main genetic clusters, associated, respectively, with oilseed rape, tobacco, and hemp as host crops. The best‐supported scenario indicated that P. ramosa infesting oilseed rape derived recently from an ancient, unknown lineage. Our results suggest that a more complete description of the genetic diversity of P. ramosa is still needed to uncover the likely source of the recent adaptation to oilseed rape and to anticipate future new host shifts.
Keywords