AIMS Mathematics (Apr 2024)
Stability analysis for a HIV model with cell-to-cell transmission, two immune responses and induced apoptosis
Abstract
In this paper, a dynamic HIV model with cell-to-cell transmission, two immune responses, and induced apoptosis is proposed and studied. First, the non-negativity and boundedness of the solutions of the model are given, and then the exact expression of the basic reproduction number $ R_{0} $ is obtained by using the next generation matrix method. Second, criteria are obtained for the local stability of the disease-free equilibrium, immune response-free equilibrium, and the infected equilibrium with both humoral and cellular immune responses. Furthermore, the threshold conditions are also derived for the global asymptotic stability of the disease-free equilibrium, immune response-free equilibrium, and the infected equilibrium with both humoral and cellular immune responses by constructing the suitable Lyapunov function. Finally, some numerical simulations are conducted to verify the theoretical results; the numerical simulation results show that the increase of apoptosis rate had a positive role in the control of viral infection.
Keywords