Physical Review Research (Jan 2020)
Nondispersive analytical solutions to the Dirac equation
Abstract
This paper presents new analytic solutions to the Dirac equation employing a recently introduced method that is based on the formulation of spinorial fields and their driving electromagnetic fields in terms of geometric algebras. A first family of solutions describe the shape-preserving translation of a wave packet along any desired trajectory in the x-y plane. In particular, we show that the dispersionless motion of a Gaussian wave packet along both elliptical and circular paths can be achieved with rather simple electromagnetic field configurations. A second family of solutions involves a plane electromagnetic wave and a combination of generally inhomogeneous electric and magnetic fields. The novel analytical solutions of the Dirac equation given here provide important insights into the connection between the quantum relativistic dynamics of electrons and the underlying geometry of the Lorentz group.