Microbiology Spectrum (Oct 2024)

Oropharyngeal microbiome profiling and its association with age and heart failure in the elderly population from the northernmost province of China

  • Jian Liu,
  • Xiao-Yu He,
  • Ke-Laier Yang,
  • Yue Zhao,
  • En-Yu Dai,
  • Wen-Jia Chen,
  • Aditya Kumar Raj,
  • Di Li,
  • Min Zhuang,
  • Xin-Hua Yin,
  • Hong Ling

DOI
https://doi.org/10.1128/spectrum.00216-24
Journal volume & issue
Vol. 12, no. 10

Abstract

Read online

ABSTRACT Respiratory tract infections are the most common triggers for heart failure in elderly people. The healthy respiratory commensal microbiota can prevent invasion by infectious pathogens and decrease the risk of respiratory tract infections. However, upper respiratory tract (URT) microbiome in the elderly is not well understood. To comprehend the profiles of URT microbiota in the elderly, and the link between the microbiome and heart failure, we investigated the oropharyngeal (OP) microbiome of these populations in Heilongjiang Province, located in the North-East of China, a high-latitude and cold area with a high prevalence of respiratory tract infection and heart failure. Taxonomy-based analysis showed that six dominant phyla were represented in the OP microbial profiles. Compared with young adults, the OP in the elderly exhibited a significantly different microbial community, mainly characterized by highly prevalent Streptococcus, unidentified_Saccharibacteria, Veillonella, unidentified_Pre votellaceae, and Neisseria. While unidentified_Prevotellaceae dominated in the young OP microbiome. There was competition for niche dominance between Streptococcus and member of Prevotellaceae in the OP. Correlation analysis revealed that the abundance of unidentified_Saccharibacteria was positive, while Streptococcus was negatively correlated to age among healthy elderly. The bacterial structure and abundance in the elderly with heart failure were much like healthy controls. Certain changes in microbial diversity indicated the potential OP microbial disorder in heart failure patients. These results presented here identify the respiratory tract core microbiota in high latitude and cold regions, and reveal the robustness of OP microbiome in the aged, supplying the basis for microbiome-targeted interventions.IMPORTANCETo date, we still lack available data on the oropharyngeal (OP) microbial communities in healthy populations, especially the elderly, in high latitude and cold regions. A better understanding of the significantly changed respiratory tract microbiota in aging can provide greater insight into characteristics of longevity and age-related diseases. In addition, determining the relationship between heart failure and OP microbiome may provide novel prevention and therapeutic strategies. Here, we compared OP microbiome in different age groups and elderly people with or without heart failure in northeastern China. We found that OP microbial communities are strongly linked to healthy aging. And the disease status of heart failure was not a powerful factor affecting OP microbiome. The findings may provide basic data to reveal respiratory bacterial signatures of individuals in a cold geographic region.

Keywords