Royal Society Open Science (Sep 2022)
Estimating the effective reproduction number for heterogeneous models using incidence data
Abstract
The effective reproduction number, [Formula: see text], plays a key role in the study of infectious diseases, indicating the current average number of new infections caused by an infected individual in an epidemic process. Estimation methods for the time evolution of [Formula: see text], using incidence data, rely on the generation interval distribution, g(τ), which is usually obtained from empirical data or theoretical studies using simple epidemic models. However, for systems that present heterogeneity, either on the host population or in the expression of the disease, there is a lack of data and of a suitable general methodology to obtain g(τ). In this work, we use mathematical models to bridge this gap. We present a general methodology for obtaining explicit expressions of the reproduction numbers and the generation interval distributions, within and between model sub-compartments provided by an arbitrary compartmental model. Additionally, we present the appropriate expressions to evaluate those reproduction numbers using incidence data. To highlight the relevance of such methodology, we apply it to the spread of COVID-19 in municipalities of the state of Rio de Janeiro, Brazil. Using two meta-population models, we estimate the reproduction numbers and the contributions of each municipality in the generation of cases in all others.
Keywords