Journal of Universal Computer Science (Nov 2021)

Incremental autoencoders for text streams clustering in social networks

  • Amal Rekik,
  • Salma Jamoussi

DOI
https://doi.org/10.3897/jucs.76770
Journal volume & issue
Vol. 27, no. 11
pp. 1203 – 1221

Abstract

Read online Read online Read online

Clustering data streams in order to detect trending topic on social networks is a chal- lenging task that interests the researchers in the big data field. In fact, analyzing such data needs several requirements to be addressed due to their large amount and evolving nature. For this purpose, we propose, in this paper, a new evolving clustering method which can take into account the incremental nature of the data and meet with its principal requirements. Our method explores a deep learning technique to learn incrementally from unlabelled examples generated at high speed which need to be clustered instantly. To evaluate the performance of our method, we have conducted several experiments using the Sanders, HCR and Terr-Attacks datasets.

Keywords