PLoS Biology (Mar 2022)

The ER membrane complex (EMC) can functionally replace the Oxa1 insertase in mitochondria

  • Büsra Güngör,
  • Tamara Flohr,
  • Sriram G. Garg,
  • Johannes M. Herrmann

Journal volume & issue
Vol. 20, no. 3

Abstract

Read online

Two multisubunit protein complexes for membrane protein insertion were recently identified in the endoplasmic reticulum (ER): the guided entry of tail anchor proteins (GET) complex and ER membrane complex (EMC). The structures of both of their hydrophobic core subunits, which are required for the insertion reaction, revealed an overall similarity to the YidC/Oxa1/Alb3 family members found in bacteria, mitochondria, and chloroplasts. This suggests that these membrane insertion machineries all share a common ancestry. To test whether these ER proteins can functionally replace Oxa1 in yeast mitochondria, we generated strains that express mitochondria-targeted Get2–Get1 and Emc6–Emc3 fusion proteins in Oxa1 deletion mutants. Interestingly, the Emc6–Emc3 fusion was able to complement an Δoxa1 mutant and restored its respiratory competence. The Emc6–Emc3 fusion promoted the insertion of the mitochondrially encoded protein Cox2, as well as of nuclear encoded inner membrane proteins, although was not able to facilitate the assembly of the Atp9 ring. Our observations indicate that protein insertion into the ER is functionally conserved to the insertion mechanism in bacteria and mitochondria and adheres to similar topological principles. Redirecting the core subunits of the protein membrane insertion complex EMC into mitochondria rescues cells deficient for the mitochondrial Oxa1 system; this supports the hypothesis that the machinery for protein insertion into the ER membrane is functionally analogous to the YidC/Oxa1/Alb3 family of bacteria, mitochondria and chloroplasts.