Vestnik Transplantologii i Iskusstvennyh Organov (Nov 2016)
SUPERCRITICAL FLUID TREATMENT OF THREE-DIMENSIONAL HYDROGEL MATRICES, COMPOSED OF CHITOSAN DERIVATIVES
Abstract
Aim. Controlled treatment of the physico-chemical and mechanical properties of a three-dimensional crosslinked matrix based on reactive chitosan. Materials and methods. The three-dimensional matrices were obtained using photosensitive composition based on allyl chitosan (5 wt%), poly(ethylene glycol) diacrylate (8 wt%) and the photoinitiator Irgacure 2959 (1 wt%) by laser stereolithography setting. The kinetic swelling curves were constructed for structures in the base and salt forms of chitosan using gravimetric method and the contact angles were measured using droplet spreading. The supercritical fl uid setting (40 °C, 12 MPa) was used to process matrices during 1.5 hours. Using nanohardness Piuma Nanoindenter we calculated values of Young’s modulus. The study of cytotoxicity was performed by direct contact with the culture of the NIH 3T3 mouse fi broblast cell line. Results. Architectonics of matrices fully repeats the program model. Matrices are uniform throughout and retain their shape after being transferred to the base form. Matrices compressed by 5% after treatment in supercritical carbon dioxide (scCO2 ). The elastic modulus of matrices after scCO2 treatment is 4 times higher than the original matrix. The kinetic swelling curves have similar form. In this case the maximum degree of swelling for matrices in base form is 2–2.5 times greater than that of matrices in salt form. There was a surface hydrophobization after the material was transferred to the base form: the contact angle is 94°, and for the salt form it is 66°. The basic form absorbs liquid approximately 1.6 times faster. The fi lm thickness was increased in the area of contact with the liquid droplets after absorption by 133 and 87% for the base and the salt forms, respectively. Treatment of samples in scCO2 reduces their cytotoxicity from 2 degree of reaction (initial samples) down to 1 degree of reaction. Conclusion. The use of supercritical carbon dioxide for scaffolds allows improving biocompatibility of the applied material for 1 degree and increasing the elastic modulus of the material more than 3 times. Allyl chitosan forms stable three-dimensional networks during laser photopolymerization. This enables desorbing toxic low molecular weight component without destruction of the matrix structure.
Keywords