Journal of Intensive Medicine (Jan 2024)

Establishment of a rat model of severe spontaneous intracerebral hemorrhage

  • Shuixiang Deng,
  • Shengjie Feng,
  • Yuewen Xin,
  • Yu He,
  • Yao Wang,
  • Mi Tian,
  • Ye Gong

Journal volume & issue
Vol. 4, no. 1
pp. 108 – 117

Abstract

Read online

Background: Severe intracerebral hemorrhage (ICH) is the most devastating subtype of stroke resulting in high mortality and disability. At present, the development of targeted treatments to minimize the high morbidity and mortality is limited partly due to the lack of a severe ICH animal model. In this study, we aimed to establish an accurate severe ICH model in rats and examine the pathological and physiological changes associated with ICH. Methods: A rat model of severe ICH model was established by intrastriatal injection of autologous blood using different blood volumes (ICH 100 µL group, ICH 130 µL group, ICH 160 µL group, ICH 170 µL group, and ICH 180 µL group). The mortality was assessed during the 28-day post-ICH period. Short- and long-term neurological deficits were evaluated using the Longa method, foot fault, falling latency, and Morris water maze tests. Brain water content, hematoma volume, hemoglobin content, and magnetic resonance imaging were assessed to determine the extent of brain injury. Immunofluorescence staining was conducted to examine microglial activation and neuronal apoptosis. Hematoxylin and eosin (H&E) staining, lung water content, and western blotting were used to assess lung injury following ICH. Results: The mortality of ICH rats increased significantly with an increase in autologous blood injection. The 28-day mortality in the 100 µL, 130 µL, 160 µL, 170 µL, and 180 µL ICH groups were 5%, 20%, 40%, 75%, and 100%, respectively. A significantly higher 28-day mortality was observed in the ICH 160 µL group compared to the ICH 100 µL group. The ICH 160 µL group exhibited significantly increased neurological deficits, brain edema, hematoma volume, and hemoglobin content compared to the sham group. Compared with the sham operation group, the activation of microglia and neuronal death in ICH 160 µL rats increased. The use of H&E staining and western blotting demonstrated that disruption of the intra-alveolar structure, alveolar edema, and infiltration of inflammatory cells and cytokines into the lung tissue were more severe in the ICH 160 µL group than the sham group. Conclusions: A severe ICH model in rats was successfully established using an injection of autologous blood at a volume of 160 µL. This model may provide a valuable tool to examine the pathological mechanisms and potential therapeutic interventions of severe ICH.

Keywords