Remote Sensing (Aug 2023)
Estimation of Soybean Yield by Combining Maturity Group Information and Unmanned Aerial Vehicle Multi-Sensor Data Using Machine Learning
Abstract
Accurate and rapid estimation of the crop yield is essential to precision agriculture. Critical to crop improvement, yield is a primary index for selecting excellent genotypes in crop breeding. Recently developed unmanned aerial vehicle (UAV) platforms and advanced algorithms can provide powerful tools for plant breeders. Genotype category information such as the maturity group information (M) can significantly influence soybean yield estimation using remote sensing data. The objective of this study was to improve soybean yield prediction by combining M with UAV-based multi-sensor data using machine learning methods. We investigated three types of maturity groups (Early, Median and Late) of soybean, and collected the UAV-based hyperspectral and red–green–blue (RGB) images at three key growth stages. Vegetation indices (VI) and texture features (Te) were extracted and combined with M to predict yield using partial least square regression (PLSR), Gaussian process regression (GPR), random forest regression (RFR) and kernel ridge regression (KRR). The results showed that (1) the method of combining M with remote sensing data could significantly improve the estimation performances of soybean yield. (2) The combinations of three variables (VI, Te and M) gave the best estimation accuracy. Meanwhile, the flowering stage was the optimal single time point for yield estimation (R2 = 0.689, RMSE = 408.099 kg/hm2), while using multiple growth stages produced the best estimation performance (R2 = 0.700, RMSE = 400.946 kg/hm2). (3) By comparing the models constructed by different algorithms for different growth stages, it showed that the models built by GPR showed the best performances. Overall, the results of this study provide insights into soybean yield estimation based on UAV remote sensing data and maturity information.
Keywords