Intelligent Systems with Applications (May 2022)
Automatic driver distraction detection using deep convolutional neural networks
Abstract
Recently, the number of road accidents has been increased worldwide due to the distraction of the drivers. This rapid road crush often leads to injuries, loss of properties, even deaths of the people. Therefore, it is essential to monitor and analyze the driver's behavior during the driving time to detect the distraction and mitigate the number of road accident. To detect various kinds of behavior like- using cell phone, talking to others, eating, sleeping or lack of concentration during driving; machine learning/deep learning can play significant role. However, this process may need high computational capacity to train the model by huge number of training dataset. In this paper, we made an effort to develop CNN based method to detect distracted driver and identify the cause of distractions like talking, sleeping or eating by means of face and hand localization. Four architectures namely CNN, VGG-16, ResNet50 and MobileNetV2 have been adopted for transfer learning. To verify the effectiveness, the proposed model is trained with thousands of images from a publicly available dataset containing ten different postures or conditions of a distracted driver and analyzed the results using various performance metrics. The performance results showed that the pre-trained MobileNetV2 model has the best classification efficiency.