Nanomaterials (Sep 2024)

Improvement of DC Performance and RF Characteristics in GaN-Based HEMTs Using SiN<sub>x</sub> Stress-Engineering Technique

  • Chenkai Deng,
  • Peiran Wang,
  • Chuying Tang,
  • Qiaoyu Hu,
  • Fangzhou Du,
  • Yang Jiang,
  • Yi Zhang,
  • Mujun Li,
  • Zilong Xiong,
  • Xiaohui Wang,
  • Kangyao Wen,
  • Wenmao Li,
  • Nick Tao,
  • Qing Wang,
  • Hongyu Yu

DOI
https://doi.org/10.3390/nano14181471
Journal volume & issue
Vol. 14, no. 18
p. 1471

Abstract

Read online

In this work, the DC performance and RF characteristics of GaN-based high-electron-mobility transistors (HEMTs) using the SiNx stress-engineered technique were systematically investigated. It was observed that a significant reduction in the peak electric field and an increase in the effective barrier thickness in the devices with compressive SiNx passivation contributed to the suppression of Fowler–Nordheim (FN) tunneling. As a result, the gate leakage decreased by more than an order of magnitude, and the breakdown voltage (BV) increased from 44 V to 84 V. Moreover, benefiting from enhanced gate control capability, the devices with compressive stress SiNx passivation showed improved peak transconductance from 315 mS/mm to 366 mS/mm, along with a higher cutoff frequency (ft) and maximum oscillation frequency (fmax) of 21.15 GHz and 35.66 GHz, respectively. Due to its enhanced frequency performance and improved pinch-off characteristics, the power performance of the devices with compressive stress SiNx passivation was markedly superior to that of the devices with stress-free SiNx passivation. These results confirm the substantial potential of the SiNx stress-engineered technique for high-frequency and high-output power applications, which are crucial for future communication systems.

Keywords