AIMS Mathematics (Aug 2017)
A regularity criterion of weak solutions to the 3D Boussinesq equations
Abstract
In this note, a regularity criterion of weaksolutions to the 3D-Boussinesq equations with respect to Serrin type condition under the framework of Besov space $\overset{.}{B}_{\infty ,\infty}^{r}$. It is shown that the weak solution $(u,\theta )$ is regular on $%(0,T] $ if $u$ satisfies $\int\limits_{0}^{T}{\left\| u\left( \cdot ,t \right) \right\|_{\overset{\cdot R}{\mathop{{{B}_{\infty ,\infty }}}}\,}^{\frac{2}{1+r}}}\ \ dt < \infty ,$ for 0<r<1. This result improves some previous works.
Keywords