Advances in Mechanical Engineering (Oct 2019)
Wind tunnel test analysis to determine pantograph noise contribution on a high-speed train
Abstract
In this study, we investigated the characteristics and the influence of the aero-acoustic noise generated from a pantograph using various experimental approaches in a wind tunnel. First, the noise generated at various flow velocities was measured and analyzed using a full-scale pantograph model. Then, the noise generated from the main position of the pantograph was derived using a microphone array attached to one side of a wind tunnel. The noise contributions of the main components of the pantograph were derived from the noise measurements obtained from a step-by-step disassembly of the full-scale model. In addition, the noise reduction achieved by panhead collectors, which are some of the most important noise sources on a pantograph, was examined by studying the results obtained when varying their geometry. In order to analyze the noise-reduction effect achieved by varying the height of the collector, different types of collectors were fabricated and wind tunnel tests were conducted. Through this study, we have investigated the aero-acoustic noise contribution of the major components of a pantograph, and we have developed effective noise-reduction measures for the panhead collector.