Cailiao gongcheng (Dec 2019)

Research progress on two-dimensional nanomaterials MXenes and their application for lithium-ion batteries

  • QI Xin,
  • CHEN Xiang,
  • PENG Si-kan,
  • WANG Ji-xian,
  • WANG Nan,
  • YAN Shao-jiu

DOI
https://doi.org/10.11868/j.issn.1001-4381.2019.000510
Journal volume & issue
Vol. 47, no. 12
pp. 10 – 20

Abstract

Read online

Lithium-ion batteries (LIBs) have been considered a promising candidate of new energy storage device. Numerous researchers around the world are committed to develop new materials for high-performance LIBs. MXenes are new type of two-dimensional nanomaterials, which are composed of transition metal, carbides or/and nitrides, with large specific surface area, good electrical conductivity, high lithium storage capacity, excellent cycling and rate performances, etc., making them as LIBs materials with bright application prospects. A variety of MXenes materials (such as Ti2CTx, Ti3C2Tx, V2CTx, Nb2CTx, etc.) have been reported to be useful as LIBs electrode materials. In addition, MXenes materials can be combined with other LIBs active materials to build good conductive network, accelerate electron transport and lithium ion diffusion, and inhibit materials pulverization caused by volume expansion of active materials during electrochemical processes. Besides, researches on MXenes materials in solid electrolytes, binders, and conductive agents for LIBs have also been reported. In this paper, the major breakthroughs in the application of MXenes materials for LIBs were reviewed. The preparation methods, structural properties and lithium storage mechanism of MXenes materials were introduced. Moreover, the specific application, existing problems of MXenes materials in LIBs have been concentrated on.This review points out that researches of MXenes materials should take advantages of their hydrophilicity and conductivity poperties,and focus on the development of composite electrode meterials,self-supporting electrodes materials etc.,which will bring breakthroughs to the key technologies of high-performance lithium-ion batteries.

Keywords