Journal of High Energy Physics (Dec 2023)

Dark sector effective field theory

  • Jin-Han Liang,
  • Yi Liao,
  • Xiao-Dong Ma,
  • Hao-Lin Wang

DOI
https://doi.org/10.1007/JHEP12(2023)172
Journal volume & issue
Vol. 2023, no. 12
pp. 1 – 36

Abstract

Read online

Abstract We introduce the effective field theory of two different light dark particles interacting with the standard model (SM) light states in a single vertex, termed dark sector effective field theory (DSEFT). We focus on the new light particles with spin up to 1 and being real in essence, namely, new real scalars ϕ and S, Majorana fermions χ and ψ, and real vectors X μ and V μ . In the framework of low energy effective field theory with QED and QCD symmetry, the DSEFT can be classified into six categories, including the scalar-scalar-SM (ϕS-SM), fermion-fermion-SM (χψ-SM), vector-vector-SM (XV-SM), scalar-fermion-SM (ϕχ-SM), scalar-vector-SM (ϕX-SM), and fermion-vector-SM (χX-SM) cases. For each case, we construct the effective operator basis up to canonical dimension 7, which will cover most interesting phenomenology at low energy. As a phenomenological example, we investigate the longstanding neutron lifetime anomaly through the neutron dark decay modes n → χϕ or χX from the effective interactions in the fermion-scalar-SM or fermion-vector-SM case. When treating the light fermion as a dark matter candidate, we also explore the constraints from DM-neutron annihilation signal at Super-Kamiokande. We find the neutron dark decay in each scenario can accommodate the anomaly, at the same time, without contradicting with the Super-Kamiokande limit.

Keywords