Axioms (Dec 2018)

Type I Almost-Homogeneous Manifolds of Cohomogeneity One—IV

  • Zhuang-Dan Daniel Guan,
  • Pilar Orellana,
  • Anthony Van

DOI
https://doi.org/10.3390/axioms8010002
Journal volume & issue
Vol. 8, no. 1
p. 2

Abstract

Read online

This paper is one of a series in which we generalize our earlier results on the equivalence of existence of Calabi extremal metrics to the geodesic stability for any type I compact complex almost homogeneous manifolds of cohomogeneity one. In this paper, we actually carry all the earlier results to the type I cases. In Part II, we obtained a substantial amount of new Kähler–Einstein manifolds as well as Fano manifolds without Kähler–Einstein metrics. In particular, by applying Theorem 15 therein, we obtained complete results in the Theorems 3 and 4 in that paper. However, we only have partial results in Theorem 5. In this note, we provide a report of recent progress on the Fano manifolds N n , m when n > 15 and N n , m ′ when n > 4 . We provide two pictures for these two classes of manifolds. See Theorems 1 and 2 in the last section. Moreover, we present two conjectures. Once we solve these two conjectures, the question for these two classes of manifolds will be completely solved. By applying our results to the canonical circle bundles, we also obtain Sasakian manifolds with or without Sasakian–Einstein metrics. These also provide open Calabi–Yau manifolds.

Keywords