Water (Jan 2020)

Generating Hydrants’ Configurations for Efficient Analysis and Management of Pressurized Irrigation Distribution Systems

  • Abdelouahid Fouial,
  • Nicola Lamaddalena,
  • Juan Antonio Rodríguez Díaz

DOI
https://doi.org/10.3390/w12010204
Journal volume & issue
Vol. 12, no. 1
p. 204

Abstract

Read online

Water scarcity is a mounting problem in arid and semi-arid regions such as the Mediterranean. Therefore, smarter and more effective water management is required, especially in irrigated agriculture. One of the most challenging uncertainties in the operation of on-demand collective Pressurized Irrigation Distribution Systems (PIDSs) is to know, a priori, the number and the position of hydrants in simultaneous operation. To this end, a model was developed to generate close to reality operating hydrants configurations, with 15, 30 or 60 min time steps, by estimating the irrigation scheduling for the entire irrigation season, using climatic, crop and soil data. The model is incorporated in an integrated DSS called Decision Support for Irrigation Distribution Systems (DESIDS) and links two of its modules, namely, the irrigation demand and scheduling module and the hydraulic analysis module. The latter is used to perform two types of analyses for the performance assessment and decision-making processes. The model was used in a real case study in Italy to generate hydrants’ operation taking into consideration irrigation scheduling. The results show that during the peak period, hydrants simultaneity topped 62%. The latter created pressure deficit in some hydrants, thus reducing the volume of water supplied for irrigation by up to 87 m3 in a single hydrant during the peak demand day. The developed model proved to be an important tool for irrigation managers, as it provides vital information with great flexibility and the ability to assess and predict the operation of PIDSs at any period during the irrigation season.

Keywords