Sensors (May 2022)

Monitoring Gases Content in Modern Agriculture: A Density Functional Theory Study of the Adsorption Behavior and Sensing Properties of CO<sub>2</sub> on MoS<sub>2</sub> Doped GeSe Monolayer

  • Xin Gao,
  • Yunwu Li

DOI
https://doi.org/10.3390/s22103860
Journal volume & issue
Vol. 22, no. 10
p. 3860

Abstract

Read online

The reasonable allocation and control of CO2 concentration in a greenhouse are very important for the optimal growth of crops. In this study, based on density functional theory (DFT), an MoS2–GeSe monolayer was proposed to unravel the issues of the lower selectivity, poorer sensitivity and non-recyclability of traditional nanomaterial gas sensors. The incorporation of MoS2 units greatly enhanced the sensitivity of the pure GeSe monolayer to CO2 and the high binding energy also demonstrated the thermal stability of the doped structures. The ideal adsorption energy, charge transfer and recovery time ensured that the MoS2–GeSe monolayer had a good adsorption and desorption ability. This paper aimed to solve the matter of recycling sensors within agriculture. This research could provide the theoretical basis for the establishment of a potentially new generation of gas sensors for the monitoring of crop growth.

Keywords