Alexandria Engineering Journal (Jan 2022)

An ecommerce recommendation algorithm based on link prediction

  • Guoguang Liu

Journal volume & issue
Vol. 61, no. 1
pp. 905 – 910

Abstract

Read online

In the field of ecommerce, most recommendation algorithms are based on user-item bipartite graph network (BGN). But this kind of recommendation algorithm is severely lacking in accuracy and diversity. In this paper, a novel ecommerce recommendation algorithm is proposed based on BGN link prediction. Firstly, all the user-item data were imported into distance formula to calculate the similarity between the attributes. Then, the BGN was projected into a single-mode network (SMN), making it more efficient to extract potential links from the BGN. On this basis, the potential links were predicted based on similarity. Through experiments on real ecommerce datasets, it was proved that our algorithm has a higher accuracy and coverage than typical recommendation algorithms.

Keywords