In this paper, a Fractional Order Power System controller (FOPSS) is designed, and its performance and robustness are experimentally evaluated by tests in a 10 kVA laboratory scale power system. The FOPSS design methodology is based on the tuning of an additional design variable, namely the fractional order of the controller transfer function. This design variable is tuned aiming to obtain a tradeoff between satisfactory damping of dominant oscillating mode and improved closed-loop system robustness. For controller synthesis, transfer function models were estimated from data collected at selected operating points and subsequently applied for the controller design and for obtaining upper bounds estimates on the operating-point depends on plant uncertainties. The experimental results show that the FOPPS was able to obtain a robust performance for the considered set of the power system operating conditions.