The influence of pulsatile flow on the oscillatory motion of an incompressible conducting boundary layer mucus fluid flowing through porous media in a channel with elastic walls is investigated. The oscillatory flow is treated as a cyclical time-dependent flux. The Laplace transform method using the Womersley number is used to solve non-linear equations controlling the motion through porous media under the influence of an electromagnetic field. The theoretical pulsatile flow of two liquid phase concurrent fluid streams, one kinematic and the other viscoelastic, is investigated in this study. To extend the model for various physiological fluids, we postulate that the viscoelastic fluid has several distinct periods. We also apply our analytical findings to mucus and airflow in the airways, identifying the wavelength that increases dynamic mucus permeability. The microorganism’s thickness, velocity, energy, molecular diffusion, skin friction, Nusselt number, Sherwood number, and Hartmann number are evaluated. Discussion is also supplied in various sections to investigate the mucosal flow process.