Neurobiology of Disease (Oct 2024)

Endothelial pyroptosis-driven microglial activation in choroid plexus mediates neuronal apoptosis in hemorrhagic stroke rats

  • Lingui Gu,
  • Hualin Chen,
  • Ruxu Geng,
  • Tingyu Liang,
  • Yihao Chen,
  • Zhuo Wang,
  • Liguo Ye,
  • Mingjiang Sun,
  • Qinglei Shi,
  • Gui Wan,
  • Jianbo Chang,
  • Junji Wei,
  • Wenbin Ma,
  • Jiashun Xiao,
  • Xinjie Bao,
  • Renzhi Wang

Journal volume & issue
Vol. 201
p. 106695

Abstract

Read online

Background: Spontaneous intracerebral hemorrhage (ICH) is associated with alarmingly high rates of disability and mortality, and current therapeutic options are suboptimal. A critical component of ICH pathology is the initiation of a robust inflammatory response, often termed “cytokine storm,” which amplifies the secondary brain injury following the initial hemorrhagic insult. The precise sources and consequences of this cytokine-driven inflammation are not fully elucidated, necessitating further investigation. Methods: To address this knowledge gap, our study conducted a comprehensive cytokine profiling using Luminex® assays, assessing 23 key cytokines. We then employed single-cell RNA sequencing and spatial transcriptomics at three critical time points post-ICH: the hyperacute, acute, and subacute phases. Integrating these multimodal analyses allowed us to identify the cellular origins of cytokines and elucidate their mechanisms of action. Results: Luminex® cytokine assays revealed a significant upregulation of IL-6 and IL-1β levels at the 24-h post-ICH time point. Through the integration of scRNA-seq and spatial transcriptomics in the hemorrhagic hemisphere of rats, we observed a pronounced activation of cytokine-related signaling pathways within the choroid plexus. Initially, immune cell presence was sparse, but it surged 24 h post-ICH, particularly in the choroid plexus, indicating a substantial shift in the immune microenvironment. We traced the source of IL-1β and IL-6 to endothelial cells, establishing a link to pyroptosis. Endothelial pyroptosis post-ICH induced the production of IL-1β and IL-6, which activated microglial polarization characterized by elevated expression of Msr1, Lcn2, and Spp1 via the NF-κB pathway in the choroid plexus. Furthermore, we identified neuronal populations undergoing apoptosis, mediated by the Lcn2-SLC22A17 pathway in response to IL-1β and IL-6 signaling. Notably, the inhibition of pyroptosis using VX-765 significantly mitigated neurological impairments. Conclusions: Our study provides evidence that endothelial pyroptosis, characterized by the release of IL-1β and IL-6, triggers microglial polarization through NF-κB pathway activation, ultimately leading to microglia-mediated neuronal apoptosis in the choroid plexus post-ICH. These findings suggest that targeted therapeutic strategies aimed at mitigating endothelial cell pyroptosis and neutralizing inflammatory cytokines may offer neuroprotection for both microglia and neurons, presenting a promising avenue for ICH treatment.

Keywords