Low N apparent surplus with higher rice yield under long-term fertilizer postponing in the rice–wheat cropping system
Yan Zhou,
Lei Xu,
Jianwei Zhang,
Weiwei Li,
Yu Jiang,
Songhan Wang,
Yanfeng Ding,
Zhenghui Liu,
Ganghua Li
Affiliations
Yan Zhou
National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
Lei Xu
National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
Jianwei Zhang
National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; Scientific Observing and Experimental Station of Arable Land, Ministry of Agriculture and Rural Affairs, China/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210095, Jiangsu, China
Weiwei Li
National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
Yu Jiang
National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
Songhan Wang
National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
Yanfeng Ding
National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
Zhenghui Liu
National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
Ganghua Li
National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; Corresponding author.
Nitrogen (N) fertilization increases rice yield, but inappropriate N fertilizer application increases N loss and the risk of environmental pollution. Short-term fertilizer postponing (FP) generally reduces N apparent surplus and increases rice yields, but the effects of long-term FP on N surplus and rice yields remain unknown. Our study was the first to investigate the impacts of long-term FP (11 years) on N apparent surplus and rice yields. FP effects in the short term (≤6 years) did not affect rice yields, whereas FP effects in the long term (>6 years) increased rice yields by 13.9% compared with conventional fertilization (CF). FP did not affect panicles per unit area, 1000-kernel weight, and filled-kernel rate, but spikelets per panicle increased over time due to spikelet formation stimulation. FP also reduced the N apparent surplus over time more strongly than CF owing to higher N accumulation and N utilization efficiency. FP effects in the long term also significantly increased soil organic matter, total N, and NH4+-N content. Our results were supported by a pot experiment, showing that rice yields in soils with a history of FP were significantly higher than those for soils without a history of FP, indicating that FP increased rice yields more strongly in later years mainly because of soil quality improvement. Our findings suggest that long-term FP can reduce N loss while increasing rice yields by improving soil quality.