PLoS Computational Biology (Apr 2007)

Psychophysical tests of the hypothesis of a bottom-up saliency map in primary visual cortex.

  • Li Zhaoping,
  • Keith A May

DOI
https://doi.org/10.1371/journal.pcbi.0030062
Journal volume & issue
Vol. 3, no. 4
p. e62

Abstract

Read online

A unique vertical bar among horizontal bars is salient and pops out perceptually. Physiological data have suggested that mechanisms in the primary visual cortex (V1) contribute to the high saliency of such a unique basic feature, but indicated little regarding whether V1 plays an essential or peripheral role in input-driven or bottom-up saliency. Meanwhile, a biologically based V1 model has suggested that V1 mechanisms can also explain bottom-up saliencies beyond the pop-out of basic features, such as the low saliency of a unique conjunction feature such as a red vertical bar among red horizontal and green vertical bars, under the hypothesis that the bottom-up saliency at any location is signaled by the activity of the most active cell responding to it regardless of the cell's preferred features such as color and orientation. The model can account for phenomena such as the difficulties in conjunction feature search, asymmetries in visual search, and how background irregularities affect ease of search. In this paper, we report nontrivial predictions from the V1 saliency hypothesis, and their psychophysical tests and confirmations. The prediction that most clearly distinguishes the V1 saliency hypothesis from other models is that task-irrelevant features could interfere in visual search or segmentation tasks which rely significantly on bottom-up saliency. For instance, irrelevant colors can interfere in an orientation-based task, and the presence of horizontal and vertical bars can impair performance in a task based on oblique bars. Furthermore, properties of the intracortical interactions and neural selectivities in V1 predict specific emergent phenomena associated with visual grouping. Our findings support the idea that a bottom-up saliency map can be at a lower visual area than traditionally expected, with implications for top-down selection mechanisms.