International Journal of Molecular Sciences (Jun 2023)

Long-Term Pioglitazone Treatment Has No Significant Impact on Microglial Activation and Tau Pathology in P301S Mice

  • Lea Helena Kunze,
  • François Ruch,
  • Gloria Biechele,
  • Florian Eckenweber,
  • Karin Wind-Mark,
  • Lina Dinkel,
  • Paul Feyen,
  • Peter Bartenstein,
  • Sibylle Ziegler,
  • Lars Paeger,
  • Sabina Tahirovic,
  • Jochen Herms,
  • Matthias Brendel

DOI
https://doi.org/10.3390/ijms241210106
Journal volume & issue
Vol. 24, no. 12
p. 10106

Abstract

Read online

Neuroinflammation is one disease hallmark on the road to neurodegeneration in primary tauopathies. Thus, immunomodulation might be a suitable treatment strategy to delay or even prevent the occurrence of symptoms and thus relieve the burden for patients and caregivers. In recent years, the peroxisome proliferator-activated receptor γ (PPARγ) has received increasing attention as it is immediately involved in the regulation of the immune system and can be targeted by the anti-diabetic drug pioglitazone. Previous studies have shown significant immunomodulation in amyloid-β (Aβ) mouse models by pioglitazone. In this study, we performed long-term treatment over six months in P301S mice as a tauopathy model with either pioglitazone or placebo. We performed serial 18 kDa translocator protein positron-emission-tomography (TSPO-PET) imaging and terminal immunohistochemistry to assess microglial activation during treatment. Tau pathology was quantified via immunohistochemistry at the end of the study. Long-term pioglitazone treatment had no significant effect on TSPO-PET, immunohistochemistry read-outs of microglial activation, or tau pathology levels in P301S mice. Thus, we conclude that pioglitazone modifies the time course of Aβ-dependent microglial activation, but does not significantly modulate microglial activation in response to tau pathology.

Keywords