Molecular Metabolism (Feb 2018)

Cadm2 regulates body weight and energy homeostasis in mice

  • Xin Yan,
  • Zhen Wang,
  • Vanessa Schmidt,
  • Anton Gauert,
  • Thomas E. Willnow,
  • Matthias Heinig,
  • Matthew N. Poy

Journal volume & issue
Vol. 8
pp. 180 – 188

Abstract

Read online

Objective: Obesity is strongly linked to genes regulating neuronal signaling and function, implicating the central nervous system in the maintenance of body weight and energy metabolism. Genome-wide association studies identified significant associations between body mass index (BMI) and multiple loci near Cell adhesion molecule2 (CADM2), which encodes a mediator of synaptic signaling enriched in the brain. Here we sought to further understand the role of Cadm2 in the pathogenesis of hyperglycemia and weight gain. Methods: We first analyzed Cadm2 expression in the brain of both human subjects and mouse models and subsequently characterized a loss-of-function mouse model of Cadm2 for alterations in glucose and energy homeostasis. Results: We show that the risk variant rs13078960 associates with increased CADM2 expression in the hypothalamus of human subjects. Increased Cadm2 expression in several brain regions of Lepob/ob mice was ameliorated after leptin treatment. Deletion of Cadm2 in obese mice (Cadm2/ob) resulted in reduced adiposity, systemic glucose levels, and improved insulin sensitivity. Cadm2-deficient mice exhibited increased locomotor activity, energy expenditure rate, and core body temperature identifying Cadm2 as a potent regulator of systemic energy homeostasis. Conclusions: Together these data illustrate that reducing Cadm2 expression can reverse several traits associated with the metabolic syndrome including obesity, insulin resistance, and impaired glucose homeostasis. Keywords: Cadm2/SynCAM2, Energy homeostasis, Insulin sensitivity, Genome-wide association studies, Leptin signaling