Scientific Reports (Nov 2024)

Auxiliary effect of trolox on coenzyme Q10 restricts angiogenesis and proliferation of retinoblastoma cells via the ERK/Akt pathway

  • Shikha Upreti,
  • Prachi Sharma,
  • Seema Sen,
  • Subhrajit Biswas,
  • Madhumita P. Ghosh

DOI
https://doi.org/10.1038/s41598-024-76135-0
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Reactive oxygen species (ROS) are essential for cancer signalling pathways and tumour maintenance, making ROS targeting a promising anti-cancer strategy. Coenzyme Q10 (CoQ10) has been shown to be effective against various cancers, but its impact on retinoblastoma, alone or with trolox, remains unreported. Cytotoxicity of CoQ10 alone and with trolox was evaluated in normal human retinal pigment epithelium cells (ARPE-19) and Y79 retinoblastoma cells using CCK-8. Flow cytometry was used to assess apoptosis, cell cycle, ROS, and mitochondrial membrane potential (MMP). Anti-angiogenic potential was tested using human umbilical vein endothelial cells (HUVECs) and chick chorioallantoic membrane (CAM) assays. Mechanistic studies were conducted via RT-PCR and western blotting. CoQ10, alone and with trolox, reduced Y79 cell viability, induced apoptosis through excess ROS generation, and decreased MMP significantly. Both treatments caused G2/M phase cell arrest. The CAM assay showed a significant reduction in endothelial cell proliferation, evidenced by fewer number of co-cultured HUVECs when exposed to CoQ10 or CoQ10 with trolox. The combination of CoQ10 and trolox significantly reduced VEGF-A, ERK, and Akt receptor levels, while CoQ10 alone significantly inhibited ERK and Akt phosphorylation. Together, CoQ10 and trolox reduced protein expression of VEGFA. CoQ10 alone and with trolox, induces apoptosis in Y79 retinoblastoma cells by inhibiting the ERK/Akt pathway and downregulating VEGFA. This study is the first to report the in vitro and in-ovo anti-cancer potential of CoQ10 alone or when combined with trolox, on human retinoblastoma Y79 cells.

Keywords