Scientific Reports (Mar 2025)

Transcriptome combined with single-cell sequencing explored prognostic markers associated with T cell exhaustion characteristics in head and neck squamous carcinoma

  • Jie Liu,
  • Penghui Li,
  • Yuanyuan Zhang,
  • Lian Zheng

DOI
https://doi.org/10.1038/s41598-025-91299-z
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Head and neck squamous cell carcinoma (HNSC) ranks among the most prevalent cancers worldwide, characterized by significant heterogeneity and a complex immune microenvironment. T cell exhaustion is pivotal in the pathogenesis of HNSC, where depleted T cells exhibit reduced proliferative capacity and diminished effector function, facilitating tumor immune escape and subsequent disease progression. A thorough understanding of the primary mechanisms driving T cell depletion within the tumor microenvironment is essential for enhancing the efficacy of immunotherapeutic approaches in HNSC, with profound implications for patient outcomes. In this study, a single-cell atlas of HNSC was constructed, enabling an in-depth analysis of T cell heterogeneity. The differentiation trajectory of T cells, transitioning from normal tissue to HNSC, was characterized, revealing a predisposition toward depletion in the C2 T cell subgroup. A subsequent cross-analysis of significantly upregulated differentially expressed genes in the C2 T cell subset identified five characteristics pertinent to T cell C2, which informed the development of a clinical prognostic model. Additionally, maximum half inhibitory concentration (IC50) values for various pharmacological agents were calculated, leading to the identification of eleven drugs relevant to the risk model, providing an intriguing starting point for further work in personalized cancer treatment. However, certain limitations of this study must be acknowledged. While T cell heterogeneity and differentiation trajectories were mapped, the interrelationships among these subpopulations remain poorly understood. Further research is required to elucidate the specific biological processes and molecular evolutionary mechanisms involved. The insights from this study provide a valuable foundation for future investigations into the molecular mechanisms and immune landscape associated with the progression from normal tissue to malignant squamous cell carcinoma.

Keywords