Drug Design, Development and Therapy (Jul 2020)

Impact of Administration Time and Kv7 Subchannels on the Cardioprotective Efficacy of Kv7 Channel Inhibition

  • Hansen J,
  • Johnsen J,
  • Nielsen JM,
  • Sørensen CB,
  • Elkjær CC,
  • Jespersen NR,
  • Bøtker HE

Journal volume & issue
Vol. Volume 14
pp. 2549 – 2560

Abstract

Read online

Jan Hansen,1,2,* Jacob Johnsen,1,2,* Jan Møller Nielsen,1,2 Charlotte Brandt Sørensen,1,2 Casper Carlsen Elkjær,1,2 Nichlas Riise Jespersen,1,2 Hans Erik Bøtker1,2 1Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark; 2Department of Clinical Medicine, Aarhus University, Aarhus, Denmark*These authors contributed equally to this workCorrespondence: Jacob JohnsenDepartment of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N 8200, DenmarkTel +45 2674 3580Email [email protected]: The mechanism of cardioprotection by Kv7.1– 5 (KCNQ1-5) channels inhibition by XE991 is unclear. We examined the impact of administration time on the cardioprotective efficacy of XE991, the involvement of key pro-survival kinases, and the importance of the Kv7 subchannels.Methods: Isolated perfused rat hearts were divided into five groups: 1) vehicle, 2) pre-, 3) post- or 4) pre- and post-ischemic administration of XE991 or 5) chromanol 293B (Kv7.1 inhibitor) followed by infarct size quantification. HL-1 cells undergoing simulated ischemia/reperfusion were exposed to either a) vehicle, b) pre-, c) per-, d) post-ischemic administration of XE991 or pre-, per- and post-ischemic administration of e) XE991, f) Chromanol 293B or g) HMR1556 (Kv7.1 inhibitor). HL-1 cell injury was evaluated by propidium iodide/Hoechst staining. Pro-survival kinase activation of Akt, Erk and STAT3 in XE991-mediated HL-1 cell protection was evaluated using phosphokinase inhibitors. Kv7 subtype expression was examined by RT-PCR and qPCR.Results: XE991, but not Chromanol 293B, reduced infarct size and improved hemodynamic recovery in all isolated heart groups. XE991 protected HL-1 cells when administered during simulated ischemia. Minor activation of the survival kinases was observed in cells exposed to XE991 but pharmacological inhibition of kinase activation did not reduce XE991-mediated protection. Kv7 subchannels 1– 5 were all present in rat hearts but predominately Kv7.1 and Kv7.4 were present in HL-1 cells and selective Kv7.1 did not reduce ischemia/reperfusion injury.Conclusion: The cardioprotective efficacy of XE991 seems to depend on its presence during ischemia and early reperfusion and do not rely on RISK (p-Akt and p-Erk) and SAFE (p-STAT3) pathway activation. The protective effect of XE991 seems mainly mediated through the Kv7.4 subchannel.Keywords: cardioprotection, Kv7 channels, myocardial ischemia reperfusion injury, myocardial infarction

Keywords