Digital Health (May 2021)

Distinguishing atrial fibrillation from sinus rhythm using commercial pulse detection systems: The non-interventional BAYathlon study

  • Christian Müller,
  • Ulf Hengstmann,
  • Michael Fuchs,
  • Martin Kirchner,
  • Frank Kleinjung,
  • Harald Mathis,
  • Stephan Martin,
  • Ingo Bläse,
  • Stefan Perings

DOI
https://doi.org/10.1177/20552076211019620
Journal volume & issue
Vol. 7

Abstract

Read online

Objective Early diagnosis of atrial fibrillation (AFib) is a priority for stroke prevention. We sought to test four commercial pulse detection systems (CPDSs) for ability to distinguish AFib from normal sinus rhythm using a published algorithm (Zhou et al., PLoS One 2015;10:e0136544), compared with visual diagnosis by electrocardiogram inspection. Methods BAYathlon was a prospective, non-interventional, single-centre study. Adult cardiology patients with documented AFib or sinus rhythm who were due to have a routine 5-min electrocardiogram were randomized to undergo a parallel 5-min pulse assessment with a Polar V800, eMotion Faros 360, TomTom heart rate monitor, or Adidas miCoach Smart Run. Results 144 patients (73 with AFib, 71 with sinus rhythm (based on electrocardiograms); median age: 73 years; 53.5% male) were analysed. Algorithm sensitivities (primary endpoint) and specificities for AFib when applied to CPDS recordings were 93.3% and 94.1% with the Polar V800, 90.0% and 84.2% with the eMotion Faros 360, and 0% and 100% with the other CPDSs (analysis period: 127 heart rate signals + 2 min). When applied to routine electrocardiograms, the algorithm correctly detected AFib in 71/73 patients. Different analysis periods (127 heart rate signals +1 or 3 min) only slightly changed the sensitivities with the Polar V800 and eMotion Faros 360 and had no effect on the sensitivities with the other CPDSs. Conclusion AFib screening using the applied algorithm is feasible with the Polar V800 and eMotion Faros 360 (which provide RR interval data) but not with the other CPDSs (which provide pre-processed heart rate time series). ClinicalTrials.gov identifier: NCT02875106