Open Chemistry (May 2024)

One-pot synthesis of a network of Mn2O3–MnO2–poly(m-methylaniline) composite nanorods on a polypyrrole film presents a promising and efficient optoelectronic and solar cell device

  • Aldosari Eman,
  • Rabia Mohamed,
  • Ewais Hassan A.,
  • Song Kenan

DOI
https://doi.org/10.1515/chem-2024-0039
Journal volume & issue
Vol. 22, no. 1
pp. 106326 – 8014

Abstract

Read online

A one-pot synthesis approach was employed to create a composite nanorod structure (Mn2O3–MnO2–poly(m-methylaniline) or Mn2O3–MnO2–PmMA) on a polypyrrole (Ppy) film. Optoelectronic and solar cell thin film devices were constructed using n- and p-type layers of Mn2O3–MnO2–PmMA and Ppy, respectively. The optical characteristics of the n-layer, coupled with the morphological behavior of its nanorods, enhance optical absorbance efficiency, reducing the bandgap value to 2.48 eV. The behavior of the optoelectronic device is chiefly determined by the significantly higher current density (J ph) value of 0.017 mA/cm2 compared to the dark current density (J o) value of 0.002 mA/cm2. Additionally, the linear dynamic range is 85 dB, and the noise ratio is 12%. The optimized values for the photosensitivity (R) and detectivity (D) at 340 nm are 0.22 mA W−1 and 0.47 × 10⁸ Jones, respectively. Even at 540 nm, these values decrease to 0.08 and 0.2 × 10⁸ Jones, respectively. For solar cell behavior, the short-circuit current (J SC) and open-circuit voltage (V OC) at 540 nm are determined, yielding values of 0.001 mA/cm2 and 0.98 V, respectively. The outstanding performance of this optoelectronic device, coupled with its solar cell behavior, positions the thin film material for a dual role in various industrial applications.

Keywords