eLife (Oct 2019)

Complementary encoding of priors in monkey frontoparietal network supports a dual process of decision-making

  • Lalitta Suriya-Arunroj,
  • Alexander Gail

DOI
https://doi.org/10.7554/eLife.47581
Journal volume & issue
Vol. 8

Abstract

Read online

Prior expectations of movement instructions can promote preliminary action planning and influence choices. We investigated how action priors affect action-goal encoding in premotor and parietal cortices and if they bias subsequent free choice. Monkeys planned reaches according to visual cues that indicated relative probabilities of two possible goals. On instructed trials, the reach goal was determined by a secondary cue respecting these probabilities. On rarely interspersed free-choice trials without instruction, both goals offered equal reward. Action priors induced graded free-choice biases and graded frontoparietal motor-goal activity, complementarily in two subclasses of neurons. Down-regulating neurons co-encoded both possible goals and decreased opposite-to-preferred responses with decreasing prior, possibly supporting a process of choice by elimination. Up-regulating neurons showed increased preferred-direction responses with increasing prior, likely supporting a process of computing net likelihood. Action-selection signals emerged earliest in down-regulating neurons of premotor cortex, arguing for an initiation of selection in the frontal lobe.

Keywords