Journal of Advanced Transportation (Jan 2017)
A Dynamic Information-Based Parking Guidance for Megacities considering Both Public and Private Parking
Abstract
The constantly increasing number of cars in the megacities is causing severe parking problems. To resolve this problem, many cities adopt parking guidance system as a part of intelligent transportation system (ITS). However, the current parking guidance system stays in its infant stage since the obtainable information is limited. To enhance parking management in the megacity and to provide better parking guidance to drivers, this study introduces an intelligent parking guidance system and proposes a new methodology to operate it. The introduced system considers both public parking and private parking so that it is designed to maximize the use of spatial resources of the city. The proposed methodology is based on the dynamic information related parking in the city and suggests the best parking space to each driver. To do this, two kinds of utility functions which assess parking spaces are developed. Using the proposed methodology, different types of parking management policies are tested through the simulation. According to the experimental test, it is shown that the centrally managed parking guidance can give better results than individually preferred parking guidance. The simulation test proves that both a driver’s benefits and parking management of a city from various points of view can be improved by using the proposed methodology.