Pharmaceutics (Aug 2018)

Characterization of CYPs and UGTs Involved in Human Liver Microsomal Metabolism of Osthenol

  • Pil Joung Cho,
  • Sanjita Paudel,
  • Doohyun Lee,
  • Yun Ji Jin,
  • GeunHyung Jo,
  • Tae Cheon Jeong,
  • Sangkyu Lee,
  • Taeho Lee

DOI
https://doi.org/10.3390/pharmaceutics10030141
Journal volume & issue
Vol. 10, no. 3
p. 141

Abstract

Read online

Osthenol is a prenylated coumarin isolated from the root of Angelica koreana and Angelica dahurica, and is an O-demethylated metabolite of osthole in vivo. Its various pharmacological effects have been reported previously. The metabolic pathway of osthenol was partially confirmed in rat osthole studies, and 11 metabolic products were identified in rat urine. However, the metabolic pathway of osthenol in human liver microsomes (HLM) has not been reported. In this study, we elucidated the structure of generated metabolites using a high-resolution quadrupole-orbitrap mass spectrometer (HR-MS/MS) and characterized the major human cytochrome P450 (CYP) and uridine 5′-diphospho-glucuronosyltransferase (UGT) isozymes involved in osthenol metabolism in human liver microsomes (HLMs). We identified seven metabolites (M1-M7) in HLMs after incubation in the presence of nicotinamide adenine dinucleotide phosphate (NADPH) and uridine 5′-diphosphoglucuronic acid (UDPGA). As a result, we demonstrated that osthenol is metabolized to five mono-hydroxyl metabolites (M1-M5) by CYP2D6, 1A2, and 3A4, respectively, a 7-O-glucuronide conjugate (M6) by UGT1A9, and a hydroxyl-glucuronide (M7) from M5 by UGT1A3 in HLMs. We also found that glucuronidation is the dominant metabolic pathway of osthenol in HLMs.

Keywords