Molecules (Apr 2022)

Engineering Plasmonic Environments for 2D Materials and 2D-Based Photodetectors

  • Jianmei Li,
  • Jingyi Liu,
  • Zirui Guo,
  • Zeyu Chang,
  • Yang Guo

DOI
https://doi.org/10.3390/molecules27092807
Journal volume & issue
Vol. 27, no. 9
p. 2807

Abstract

Read online

Two-dimensional layered materials are considered ideal platforms to study novel small-scale optoelectronic devices due to their unique electronic structures and fantastic physical properties. However, it is urgent to further improve the light–matter interaction in these materials because their light absorption efficiency is limited by the atomically thin thickness. One of the promising approaches is to engineer the plasmonic environment around 2D materials for modulating light–matter interaction in 2D materials. This method greatly benefits from the advances in the development of nanofabrication and out-plane van der Waals interaction of 2D materials. In this paper, we review a series of recent works on 2D materials integrated with plasmonic environments, including the plasmonic-enhanced photoluminescence quantum yield, strong coupling between plasmons and excitons, nonlinear optics in plasmonic nanocavities, manipulation of chiral optical signals in hybrid nanostructures, and the improvement of the performance of optoelectronic devices based on composite systems.

Keywords