Journal of Functional Biomaterials (Dec 2020)

Biocompatibility and Biological Corrosion Resistance of Ti–39Nb–6Zr+0.45Al Implant Alloy

  • Yu-Jin Hwang,
  • Young-Sin Choi,
  • Yun-Ho Hwang,
  • Hyun-Wook Cho,
  • Dong-Geun Lee

DOI
https://doi.org/10.3390/jfb12010002
Journal volume & issue
Vol. 12, no. 1
p. 2

Abstract

Read online

Titanium and titanium alloys are promising implant metallic materials because of their high strengths, low elastic moduli, high corrosion resistances, and excellent biocompatibilities. A large difference in elastic modulus between the implant material and bone leads to a stress shielding effect, which increases the probability of implant separation or decrease in the bone density around it. Thus, a lower elastic modulus is required for a better implant metallic material. β titanium has a lower elastic modulus and high strength and can reduce the probability of the stress shielding effect. In this study, the applicability of the Ti–39Nb–6Zr+0.45Al alloy, obtained by adding a small amount of aluminum to the Ti–39Nb–6Zr alloy, as a biomedical implant material was evaluated. The mechanical properties and biocompatibility of the alloy were evaluated. The biocompatibility of Ti–39Nb–6Zr+0.45Al was similar to that of Ti–39Nb–6Zr according to in vitro and in vivo experiments. In addition, the biological corrosion resistances were evaluated through a corrosion test using a 0.9% NaCl solution, which is equivalent to physiological saline. The corrosion resistance was improved by the addition of Al. The yield strength of the Ti–39Nb–6Zr+0.45Al alloy was improved by approximately 20%. The excellent biocompatibility confirmed its feasibility for use as a biomedical implant material.

Keywords