mBio (Jun 2022)
Genome-Wide Association Study of Campylobacter-Positive Diarrhea Identifies Genes Involved in Toxin Processing and Inflammatory Response
Abstract
ABSTRACT Diarrhea is responsible for the deaths of more than 500,000 children each year, many of whom reside in low-to-middle-income countries (LMICs). Additionally, children with multiple diarrheal infections early in life have increased growth stunting and malnutrition and decreased vaccine efficacy. Two bacteria that contribute to the burden of diarrhea are Campylobacter jejuni and Campylobacter coli, both are endemic in Bangladesh. However, not all children that are exposed to these pathogens, including Campylobacter, will experience diarrhea. We hypothesized that host genetics may influence susceptibility to Campylobacter infections and performed a genome-wide association study in 534 children from two independent birth cohorts in Dhaka, Bangladesh. Infants were monitored for diarrhea for the first 2 years of life and only defined as controls if all diarrheal samples in the first year were negative for Campylobacter jejuni/C. coli. Each cohort was analyzed separately under an additive model and adjusted for length-for-age z-scores at birth and 12 months, sex, water treatment, and ancestry. In a fixed effect inverse-variance weighted meta-analysis of these two cohorts, we identified a genome-wide significant region on chromosome 8 in intron 4 of the rho guanine nucleotide exchange factor 10 gene (ARHGEF10). Individuals with the G allele (rs13281104) had a 2-fold lower risk of having a Campylobacter-associated diarrheal episode than individuals with the A allele (OR 0.41, 95% CI 0.29 to 0.58, P = 3.6 × 10−7). This SNP is associated with decreased expression of the neighboring gene, CLN8, which may be involved in the transport of the cytolethal distending toxin produced by Campylobacter. IMPORTANCE Children in low-to-middle-income countries often suffer from multiple enteric infections in their first few years of life, many of which have the potential for long-lasting effects. These children are already likely to be malnourished and underweight, and chronic intestinal disturbances exacerbate these conditions. Despite public health interventions aimed at improving water, sanitation, and hygiene, enteric infections are still a leading cause of death for children under five. Previous work has included transmission dynamics, pathogen characteristics, and evaluation of interventions. Here, we examined the role of host genetic variation in susceptibility to diarrhea-associated Campylobacter infection. In our meta-analysis of two independent birth cohorts from Dhaka, Bangladesh, we found that children carrying a specific genetic variant (rs13281104, in an intron of ARHGEF10) were half as likely to have a diarrhea-associated Campylobacter infection in their first year of life. This protective effect may be achieved by decreasing gene expression and thereby impacting host-pathogen interactions and host immune response.
Keywords