Molecules (Jul 2022)

Novel Co<sub>5</sub> and Ni<sub>4</sub> Metal Complexes and Ferromagnets by the Combination of 2-Pyridyl Oximes with Polycarboxylic Ligands

  • Foteini Dimakopoulou,
  • Costantinos G. Efthymiou,
  • Ciaran O’Malley,
  • Andreas Kourtellaris,
  • Eleni Moushi,
  • Anastasios Tasiopooulos,
  • Spyros P. Perlepes,
  • Patrick McArdle,
  • Ernesto Costa-Villén,
  • Julia Mayans,
  • Constantina Papatriantafyllopoulou

DOI
https://doi.org/10.3390/molecules27154701
Journal volume & issue
Vol. 27, no. 15
p. 4701

Abstract

Read online

The use of 2-pyridyl oximes in metal complexes chemistry has been extensively investigated in the last few decades as a fruitful source of species with interesting magnetic properties. In this work, the initial combination of pyridine-2-amidoxime (pyaoxH2) and 2-methyl pyridyl ketoxime (mpkoH) with isonicotinic acid (HINA) and 3,5-pyrazole dicarboxylic acid (H3pdc) has provided access to three new compounds, [Ni4(INA)2(pyaox)2(pyaoxH)2(DMF)2] (1), [Co5(mpko)6(mpkoH)2(OMe)2(H2O)](ClO4)6 (2), and [Co5(OH)(Hpdc)5(H2pdc)] (3). 1 displays a square-planar metal topology, being the first example that bears simultaneously HINA and pyaoxH2 in their neutral or ionic form. The neighbouring Ni4 units in 1 are held together through strong intermolecular hydrogen bonding interactions, forming a three-dimensional supramolecular framework. 2 and 3 are mixed-valent Co4IIICoII and Co2IIICoII3 compounds with a bowtie and trigonal bipyramidal metal topology, accordingly. Direct current and alternate current magnetic susceptibility studies revealed that the exchange interactions between the NiII ions in 1 are ferromagnetic (J = 1.79(4) cm−1), while 2 exhibits weak AC signals in the presence of a magnetic field. The syntheses, crystal structures, and magnetic properties of 1–3 are discussed in detail.

Keywords