Stem Cell Research & Therapy (Jan 2021)
Characterization of traumatized muscle-derived multipotent progenitor cells from low-energy trauma
Abstract
Abstract Background Multipotent progenitor cells have been harvested from different human tissues, including the bone marrow, adipose tissue, and umbilical cord blood. Previously, we identified a population of mesenchymal progenitor cells (MPCs) isolated from the traumatized muscle of patients undergoing reconstructive surgery following a war-related blast injury. These cells demonstrated the ability to differentiate into multiple mesenchymal lineages. While distal radius fractures from a civilian setting have a much lower injury mechanism (low-energy trauma), we hypothesized that debrided traumatized muscle near the fracture site would contain multipotent progenitor cells with the ability to differentiate and regenerate the injured tissue. Methods The traumatized muscle was debrided from the pronator quadratus in patients undergoing open reduction and internal fixation for a distal radius fracture at the Walter Reed National Military Medical Center. Using a previously described protocol for the isolation of MPCs from war-related extremity injuries, cells were harvested from the low-energy traumatized muscle samples and expanded in culture. Isolated cells were characterized by flow cytometry and q-RT-PCRs and induced to adipogenic, osteogenic, and chondrogenic differentiation. Downstream analyses consisted of lineage-specific staining and q-RT-PCR. Results Cells isolated from low-energy traumatized muscle samples were CD73+, CD90+, and CD105+ that are the characteristic of adult human mesenchymal stem cells. These cells expressed high levels of the stem cell markers OCT4 and NANOG 1-day after isolation, which was dramatically reduced over-time in monolayer culture. Following induction, lineage-specific markers were demonstrated by each specific staining and confirmed by gene expression analysis, demonstrating the ability of these cells to differentiate into adipogenic, osteogenic, and chondrogenic lineages. Conclusions Adult multipotent progenitor cells are an essential component for the success of regenerative medicine efforts. While MPCs have been isolated and characterized from severely traumatized muscle from high-energy injuries, here, we report that cells with similar characteristics and multipotential capacity have been isolated from the tissue that was exposed to low-energy, community trauma.
Keywords