PLoS ONE (Jan 2022)

Neural correlates of local parallelism during naturalistic vision

  • John Wilder,
  • Morteza Rezanejad,
  • Sven Dickinson,
  • Kaleem Siddiqi,
  • Allan Jepson,
  • Dirk B. Walther

Journal volume & issue
Vol. 17, no. 1

Abstract

Read online

Human observers can rapidly perceive complex real-world scenes. Grouping visual elements into meaningful units is an integral part of this process. Yet, so far, the neural underpinnings of perceptual grouping have only been studied with simple lab stimuli. We here uncover the neural mechanisms of one important perceptual grouping cue, local parallelism. Using a new, image-computable algorithm for detecting local symmetry in line drawings and photographs, we manipulated the local parallelism content of real-world scenes. We decoded scene categories from patterns of brain activity obtained via functional magnetic resonance imaging (fMRI) in 38 human observers while they viewed the manipulated scenes. Decoding was significantly more accurate for scenes containing strong local parallelism compared to weak local parallelism in the parahippocampal place area (PPA), indicating a central role of parallelism in scene perception. To investigate the origin of the parallelism signal we performed a model-based fMRI analysis of the public BOLD5000 dataset, looking for voxels whose activation time course matches that of the locally parallel content of the 4916 photographs viewed by the participants in the experiment. We found a strong relationship with average local symmetry in visual areas V1-4, PPA, and retrosplenial cortex (RSC). Notably, the parallelism-related signal peaked first in V4, suggesting V4 as the site for extracting paralleism from the visual input. We conclude that local parallelism is a perceptual grouping cue that influences neuronal activity throughout the visual hierarchy, presumably starting at V4. Parallelism plays a key role in the representation of scene categories in PPA.