Shock and Vibration (Jan 2009)
Active Noise Control Using a Functional Link Artificial Neural Network with the Simultaneous Perturbation Learning Rule
Abstract
In practical active noise control (ANC) systems, the primary path and the secondary path may be nonlinear and time-varying. It has been reported that the linear techniques used to control such ANC systems exhibit degradation in performance. In addition, the actuators of an ANC system very often have nonminimum-phase response. A linear controller under such situations yields poor performance. A novel functional link artificial neural network (FLANN)-based simultaneous perturbation stochastic approximation (SPSA) algorithm, which functions as a nonlinear mode-free (MF) controller, is proposed in this paper. Computer simulations have been carried out to demonstrate that the proposed algorithm outperforms the standard filtered-x least mean square (FXLMS) algorithm, and performs better than the recently proposed filtered-s least mean square (FSLMS) algorithm when the secondary path is time-varying. This observation implies that the SPSA-based MF controller can eliminate the need of the modeling of the secondary path for the ANC system.