Entropy (Oct 2022)
Quantum Misuse Attack on Frodo
Abstract
Research on the security of lattice-based public-key encryption schemes against misuse attacks is an important part of the cryptographic assessment of the National Institute of Standards and Technology (NIST) post-quantum cryptography (PQC) standardization process. In particular, many NIST-PQC cryptosystems follow the same meta-cryptosystem. At EUROCRYPT 2019, Ba˘etu et al. mounted a classical key recovery under plaintext checking attacks (KR-PCA) and a quantum key recovery under chosen ciphertext attacks (KR-CCA). They analyzed the security of the weak version of nine submissions to NIST. In this paper, we focus on learning with error (LWE)-based FrodoPKE, whose IND-CPA security is tightly related to the hardness of plain LWE problems. We first review the meta-cryptosystem and quantum algorithm for solving quantum LWE problems. Then, we consider the case where the noise follows a discrete Gaussian distribution and recompute the success probability for quantum LWE by using Hoeffding bound. Finally, we give a quantum key recovery algorithm based on LWE under CCA attack and analyze the security of Frodo. Compared with the existing work of Ba˘etu et al., our method reduces the number of queries from 22 to 1 with the same success probability.
Keywords