Frontiers in Microbiology (Oct 2022)

Long-term continuous mono-cropping of Macadamia integrifolia greatly affects soil physicochemical properties, rhizospheric bacterial diversity, and metabolite contents

  • Liang Tao,
  • Chunsheng Zhang,
  • Zhiping Ying,
  • Zhi Xiong,
  • Haim Shalom Vaisman,
  • Changming Wang,
  • Zhuogong Shi,
  • Rui Shi

DOI
https://doi.org/10.3389/fmicb.2022.952092
Journal volume & issue
Vol. 13

Abstract

Read online

Macadamia integrifolia is the most economically important Proteaceae crop known for its edible nuts. The present study was conducted to examine the effect of continuous cultivation (for 1, 5, and 20 years) of M. integrifolia on soil quality, bacterial diversity, and metabolites. Soil rhizospheres from three different Macadamia rhizosphere orchards, 1-year monoculture orchard (CK), 5-year monoculture orchard (Y5), and 20-year monoculture orchard (Y20), were analyzed through metagenomic and metabolomic profiling. The soil physicochemical properties, including organic matter, and available nutrients (P, N, and K) were first increased significantly (p < 0.05) from the CK to the Y5 group and then decreased (p < 0.05) from the Y5 to the Y20 group. The soil pH continuously decreased (p < 0.05) over time from CK to Y20. Metagenomic profiling revealed that Actinobacteria, Acidobacteria, and Proteobacteria were the top three abundant phyla with their inconsistent relative abundance patterns from CK to Y20 (CK: 23.76%, Y5: 34. 06%, and Y20: 31.55%), (CK: 13.59%, Y5: 18.59%, and Y20: 21.35%), and (CK: 27.59%, Y5: 15.98%, and Y20: 17.08%), respectively. Furthermore, the Y5 rhizospheres had a higher number of beneficial bacterial genera belonging to Proteobacteria and Actinobacteria than the Y20 rhizospheres. The KEGG annotation analysis revealed that cellular processes, organism systems, metabolism, and genetic information were the most enriched functional categories. CAZy database screening indicated the highest enrichment of glycoside hydrolases following the glycoside transferases and carbohydrate-binding modules. Differential metabolite analysis revealed the highest number of metabolites (11) in the Y5 group than in the Y20 group (6). It is concluded that continuous monoculture of M. integrifolia improves the soil physicochemical properties, bacterial diversity, and metabolite contents in short-term planted orchards which, however, are deteriorated in long-term planted orchards.

Keywords