We performed a fully differential experimental and theoretical study on ionization of He in intermediate-energy collisions with protons for a small projectile coherence length. Data were taken for an ejected electron energy corresponding to a speed close to the projectile speed (velocity matching). In the fully differential angular electron distributions, a pronounced double-peak structure, observed previously for a coherence length much larger than the atomic size, is much less pronounced in the current data. This observation is interpreted in terms of interference between first-and higher-order transition amplitudes. Although there is large quantitative disagreement between experiment and theory, the qualitative agreement supports this interpretation.