Journal of Imaging (Jan 2019)

FPGA-Based Processor Acceleration for Image Processing Applications

  • Fahad Siddiqui,
  • Sam Amiri,
  • Umar Ibrahim Minhas,
  • Tiantai Deng,
  • Roger Woods,
  • Karen Rafferty,
  • Daniel Crookes

DOI
https://doi.org/10.3390/jimaging5010016
Journal volume & issue
Vol. 5, no. 1
p. 16

Abstract

Read online

FPGA-based embedded image processing systems offer considerable computing resources but present programming challenges when compared to software systems. The paper describes an approach based on an FPGA-based soft processor called Image Processing Processor (IPPro) which can operate up to 337 MHz on a high-end Xilinx FPGA family and gives details of the dataflow-based programming environment. The approach is demonstrated for a k-means clustering operation and a traffic sign recognition application, both of which have been prototyped on an Avnet Zedboard that has Xilinx Zynq-7000 system-on-chip (SoC). A number of parallel dataflow mapping options were explored giving a speed-up of 8 times for the k-means clustering using 16 IPPro cores, and a speed-up of 9.6 times for the morphology filter operation of the traffic sign recognition using 16 IPPro cores compared to their equivalent ARM-based software implementations. We show that for k-means clustering, the 16 IPPro cores implementation is 57, 28 and 1.7 times more power efficient (fps/W) than ARM Cortex-A7 CPU, nVIDIA GeForce GTX980 GPU and ARM Mali-T628 embedded GPU respectively.

Keywords