Haematologica (Oct 2024)

Cyclin C promotes development and progression of B-cell acute lymphoblastic leukemia by counteracting p53-mediated stress responses

  • Jana Trifinopoulos,
  • Julia List,
  • Thorsten Klampfl,
  • Klara Klein,
  • Michaela Prchal-Murphy,
  • Agnieszka Witalisz-Siepracka,
  • Florian Bellutti,
  • Luca L. Fava,
  • Gerwin Heller,
  • Sarah Stummer,
  • Patricia Testori,
  • Monique L. den Boer,
  • Judith M. Boer,
  • Sonja Marinovic,
  • Gregor Hoermann,
  • Wencke Walter,
  • Andreas Villunger,
  • Piotr Sicinski,
  • Veronika Sexl,
  • Dagmar Gotthardt

DOI
https://doi.org/10.3324/haematol.2024.285701
Journal volume & issue
Vol. 999, no. 1

Abstract

Read online

Despite major therapeutic advances in the treatment of acute lymphoblastic leukemia (ALL), resistances and long-term toxicities still pose significant challenges. Cyclins and their associated cyclin-dependent kinases are one focus of cancer research when looking for targeted therapies. We discovered cyclin C as a key factor for B-ALL development and maintenance. While cyclin C is non-essential for normal hematopoiesis, CcncΔ/Δ BCR::ABL1+ B-ALL cells fail to elicit leukemia in mice. RNA sequencing experiments revealed a p53 pathway deregulation in CcncΔ/Δ BCR::ABL1+ cells resulting in the incapability of the leukemic cells to adequately respond to stress. A genome-wide CRISPR/Cas9 loss-of-function screen supplemented with additional knock-outs unveiled a dependency of human B-lymphoid cell lines on CCNC. High cyclin C levels in B-cell precursor (BCP) ALL patients were associated with poor event-free survival and increased risk of early disease recurrence after remission. Our findings highlight cyclin C as potential therapeutic target for B-ALL, particularly to enhance cancer cell sensitivity to stress and chemotherapy.